A note on the von Neumann algebra underlying some universal compact quantum groups

Kenny De Commer^{*} Department of Mathematics, K.U. Leuven Celestijnenlaan 200B, 3001 Leuven, Belgium

e-mail: kenny.decommer@wis.kuleuven.be

Abstract

We show that for $F \in GL(2, \mathbb{C})$, the von Neumann algebra associated to the universal quantum group $A_u(F)$ is a free Araki-Woods factor.

Introduction

It is a classical theorem that any compact Lie group is a closed subgroup of some U(n). In [5], a class of quantum groups was introduced which plays the same rôle with respect to the compact matrix quantum groups (introduced in [8], but there called compact quantum *pseudo*groups). These universal quantum groups were denoted $A_u(F)$, where the parameter F takes values in invertible matrices over \mathbb{C} . In [1], the representation theory of the $A_u(F)$ was investigated, and it was shown that the irreducible representations are naturally labeled by the free monoid with two generators. Also on the level of the 'function algebra' of $A_u(F)$, freeness manifests itself: it was shown in [1] that the (normalized) trace of the fundamental representation is a circular element w.r.t. the Haar state (in the sense of Voiculescu, see [6]). Furthermore, the von Neumann algebra associated to $A_u(I_2)$, where I_2 is the unit matrix in $GL(2, \mathbb{C})$, is actually isomorphic to the free group factor $\mathscr{L}(\mathbb{F}_2)$.

In this note, we generalize this last result by showing that for $0 < q \leq 1$, the von Neumann algebra underlying the universal quantum group $A_u(F)$ with $F = \begin{pmatrix} 1 & 0 \\ 0 & q \end{pmatrix}$ is a free Araki-Woods factor ([4]), namely the one associated to the orthogonal representation

$$t \to \begin{pmatrix} \cos(t \ln q^2) & -\sin(t \ln q^2) \\ \sin(t \ln q^2) & \cos(t \ln q^2) \end{pmatrix}$$

of \mathbb{R} on \mathbb{R}^2 . The proof of this fact uses a technique similar to the one of Banica for the case $F = I_2$, combined with results from [3] (which are based on the matrix model techniques from [4]). Since

$$A_u(F) = A_u(\lambda U|F|U^*)$$

^{*}Research Assistant of the Research Foundation - Flanders (FWO - Vlaanderen).

for any $\lambda \in \mathbb{R}_0^+$ and any unitary U (see [1]), we obtain that all $A_u(F)$ with $F \in GL(2, \mathbb{C})$ have free Araki-Woods factors as their associated von Neumann algebras.

Remarks on notation: We denote by \odot the algebraic tensor product of vector spaces over \mathbb{C} , and by \otimes the spatial tensor product between von Neumann algebras or Hilbert spaces. If M is a von Neumann algebra and x_1, x_2, \ldots are elements in M, we denote by $W^*(x_1, x_2, \ldots)$ the von Neumann subalgebra of M which is the σ -weak closure of the unital *-algebra generated by the x_i .

1 Preliminaries

In this preliminary section, we will give, for the sake of economy, ad hoc definitions of the von Neumann algebras associated to the $A_u(F)$ and $A_o(F)$ quantum groups ([5]), and of the free Araki-Woods factors ([4]), for special values of their parameters.

Throughout this section, we fix a number 0 < q < 1.

Definition 1.1. We define the C^* -algebra $C_u(H)$ as the universal enveloping C^* -algebra of the unital *-algebra generated by elements a and b, with defining relations

$$\begin{cases} a^*a + b^*b = 1 & ab = qba \\ aa^* + q^2bb^* = 1 & a^*b = q^{-1}ba^* \\ bb^* = b^*b. \end{cases}$$

Remark: $C_u(H)$ is the (universal) C^{*}-algebra associated with the quantum group $H = SU_q(2)$. In [1], Proposition 5, it is shown that this equals the quantum group $A_o(\begin{pmatrix} 0 & 1 \\ -q^{-1} & 0 \end{pmatrix})$.

The following fact is found in [9].

Lemma 1.2. Let \mathscr{H} be the Hilbert space $l^2(\mathbb{N}) \otimes l^2(\mathbb{Z})$, whose canonical basis elements we denote as $\xi_{n,k}$ (and with the convention $\xi_{n,k} = 0$ when n < 0). Then there exists a faithful unital *-representation of $C_u(H)$ on \mathscr{H} , determined by

$$\begin{cases} \pi(a)\,\xi_{n,k} = \sqrt{1 - q^{2n}}\xi_{n-1,k}, \\ \pi(b)\xi_{n,k} = q^n\,\xi_{n,k+1}. \end{cases}$$

Definition 1.3. In the notation of the previous lemma, denote by ψ the state

$$\psi(x) = (1 - q^2) \sum_{n \in \mathbb{N}} q^{2n} \langle \pi(x)\xi_{n,0}, \xi_{n,0} \rangle$$

on $C_u(H)$. Then ψ is called the Haar state on $C_u(H)$.

Of course, this name is motivated by the further compact quantum group structure on $C_u(H)$, which we will however not need in the following.

Definition 1.4. The von Neumann algebra $\mathscr{L}^{\infty}(H)$ is defined to be the σ -weak closure of $C_u(H)$ in its GNS-representation with respect to the Haar state ψ .

We then continue to write ψ for the extension of ψ to a normal state on $\mathscr{L}^{\infty}(H)$.

Notation 1.5. We will further use the following notations:

- The matrix units of $B(l^2(\mathbb{N}))$ w.r.t. the canonical basis of $l^2(\mathbb{N})$ are written e_{ij} .
- We denote ω for the normal state $\omega(e_{ij}) = \delta_{i,j}(1-q^2)q^{2i}$ on $B(l^2(\mathbb{N}))$.
- We denote by $S \subseteq \mathscr{L}(\mathbb{Z})$ the shift operator $\xi_k \to \xi_{k+1}$ on $l^2(\mathbb{Z})$.
- We denote by τ the state on $\mathscr{L}(\mathbb{Z})$ which makes S into a Haar unitary with respect to τ .

This last fact simply means that $\tau(S^n) = 0$ for $n \in \mathbb{Z}_0$.

We will use the terminology 'W^{*}-probability space' when talking about a von Neumann algebra with some fixed normal state on it. An isomorphism between two W^{*}-probability spaces is then a ^{*}isomorphism between the underlying von Neumann algebras, preserving the associated fixed states.

Lemma 1.6. There is a natural isomorphism

$$(\mathscr{L}^{\infty}(H),\psi) \to (B(l^{2}(\mathbb{N})) \otimes \mathscr{L}(\mathbb{Z}),\omega \otimes \tau)$$

of W^* -probability spaces.

Proof. By the construction of ψ , we may identify $\mathscr{L}^{\infty}(H)$ with $\pi(C_u(H))''$, and it is then sufficient to prove that this last von Neumann algebra equals $B(l^2(\mathbb{N})) \otimes \mathscr{L}(\mathbb{Z})$. Clearly, $\pi(C_u(H))'' \subseteq B(l^2(\mathbb{N})) \otimes \mathscr{L}(\mathbb{Z})$. By functional calculus on a and b, we have $e_{ij} \otimes S^n \in \pi(C_u(H))''$ for all $i, j \in \mathbb{N}$ and $n \in \mathbb{Z}$, so in fact equality holds.

We will always write $(1 \otimes S)$ for the copy of $S \in \mathscr{L}(\mathbb{Z})$ inside $\mathscr{L}^{\infty}(H)$. Hence there should be no notational confusion in the following definition.

Definition 1.7. The W^{*}-probability space $(\mathscr{L}^{\infty}(G), \varphi)$ is defined as

 $(W^*(Sa, Sb, Sa^*, Sb^*), (\tau * \psi)_{|\mathscr{L}^{\infty}(G)}) \subseteq (\mathscr{L}(\mathbb{Z}), \tau) * (\mathscr{L}^{\infty}(H), \psi).$

Remark: By [1], Théorème 1.(iv), the von Neumann algebra $\mathscr{L}^{\infty}(G)$ will coincide with the von Neumann algebra associated with the universal quantum group $A_u\begin{pmatrix} 1 & 0 \\ 0 & q \end{pmatrix}$), and φ with its Haar state.

Recall that the state ω was introduced in Notation 1.5.

Definition 1.8. ([4], Corollary 4.9) By a free Araki-Woods factor (at parameter q^2), we mean a W^* -probability space (N, ϕ) isomorphic to the free product $(\mathscr{L}(\mathbb{Z}), \tau) * (B(l^2(\mathbb{N})), \omega)$.

2 $\mathscr{L}^{\infty}(G)$ is free Araki-Woods

Throughout this section, we again fix a number 0 < q < 1. We also continue to use the notations introduced in the previous section.

We proceed to prove the following theorem.

Theorem 2.1. The W^{*}-probability space $(\mathscr{L}^{\infty}(G), \varphi)$ is a free Araki-Woods factor at parameter q^2 .

By the remark after Definition 1.7 and the remarks in the introduction, this will imply that if $F \in GL(2,\mathbb{C})$, then the von Neumann algebra associated to $A_u(F)$ is the free Araki-Woods factor at parameter $\frac{\lambda_1}{\lambda_2}$, where $\lambda_1 \leq \lambda_2$ are the eigenvalues of F^*F (where we take $\mathscr{L}(\mathbb{F}_2)$ to be the free

Araki-Woods factor at parameter 1).

The proof of Theorem 2.1 will be preceded by three lemmas. Consider the following von Neumann subalgebras of $(\mathscr{L}(\mathbb{Z}), \tau) * (\mathscr{L}^{\infty}(H), \psi)$:

$$(M_1, \varphi_1) = (W^*(S(1 \otimes S)), (\tau * \psi)_{|M_1})$$

and

$$(M_2,\varphi_2) = (W^*((1 \otimes S^*)a, (1 \otimes S^*)b, (1 \otimes S^*)a^*, (1 \otimes S^*)b^*), (\tau * \psi)_{|M_2})$$

Lemma 2.2. The von Neumann algebras M_1 and M_2 are free with respect to each other, and $\mathscr{L}^{\infty}(G)$ is the smallest von Neumann subalgebra of $\mathscr{L}(\mathbb{Z}) * \mathscr{L}^{\infty}(H)$ which contains them.

Proof. The proof is entirely similar to the one of Théorème 6 in [1]. First of all, remark that $S(1 \otimes S)$ is the unitary part in the polar decomposition of Sb, so that $S(1 \otimes S)$ is in $\mathscr{L}^{\infty}(G)$. Then of course

$$(1 \otimes S^*)a = (1 \otimes S^*)S^* \cdot Sa$$

is in $\mathscr{L}^{\infty}(G)$, and similarly for the other generators of M_2 . Hence M_1 and M_2 indeed generate $\mathscr{L}^{\infty}(G)$.

The proof of the freeness of M_1 w.r.t. M_2 is based on a small alteration of Lemme 8 of [1].

Lemma. Let (A, ϕ) be a unital *-algebra together with a functional ϕ on it. Let $B \subseteq A$ be a unital sub-*-algebra, and $d \in B$ a unitary in the center of B such that $\phi(d) = \phi(d^*) = 0$. Let $u \in A$ be a Haar unitary which is *-free from B w.r.t. ϕ . Then ud is a Haar unitary which is *-free from B w.r.t. ϕ .

Proof. This is precisely Lemme 8 of [1], with the condition ' ϕ is a trace' replaced by 'd is in the center of B'. However, the proof of that lemma still applies ad verbam.

We can then apply this lemma to get that $S(1 \otimes S)$ is *-free w.r.t. $\mathscr{L}^{\infty}(H)$, by taking $(A, \phi) = (\mathscr{L}(\mathbb{Z}), \tau) * (\mathscr{L}^{\infty}(H), \psi), B = \mathscr{L}^{\infty}(H), d = 1 \otimes S$ and u = S. A fortiori, we will then have M_1 free w.r.t. M_2 .

Lemma 2.3. We have

$$(M_1, \varphi_1) \cong (\mathscr{L}(\mathbb{Z}), \tau)$$

and

$$(M_2, \varphi_2) \cong (B(l^2(\mathbb{N})) \otimes \mathscr{L}(\mathbb{Z}), \omega \otimes \tau).$$

Proof. The fact that $(M_1, \varphi_1) \cong (\mathscr{L}(\mathbb{Z}), \tau)$ is of course trivial. We want to show that $(M_2, \varphi_2) \cong (B(l^2(\mathbb{N})) \otimes \mathscr{L}(\mathbb{Z}), \omega \otimes \tau).$

We have that $1 \otimes S^2$ is in M_2 , since this is the adjoint of the unitary part of the polar decomposition of $(1 \otimes S^*)b^*$. Also all $e_{ii} \otimes 1$ are in M_2 , by functional calculus on the positive part of this polar decomposition. Hence, by multiplying $(1 \otimes S^*)a$ or $(1 \otimes S^*)a^*$ to the left with the $e_{ii} \otimes 1$, and possibly multiplying with $1 \otimes S^2$, we conclude that the $e_{ij} \otimes S^{i-j}$ with |i-j| = 1 are in M_2 . But then also all $f_{ij} = e_{ij} \otimes S^{i-j}$ with $i, j \in \mathbb{N}$ are in M_2 , and it is not hard to see that in fact $M_2 = W^*(f_{ij}, (1 \otimes S^2))$. Since $\psi(f_{ij}(1 \otimes S^2)^n) = (\omega \otimes \tau)(e_{ij} \otimes S^n)$ by an easy calculation, we are done.

Lemma 2.4. The W^{*}-probability space $(N, \phi) := (\mathscr{L}(\mathbb{Z}), \tau) * (B(l^2(\mathbb{N})) \otimes \mathscr{L}(\mathbb{Z}), \omega \otimes \tau)$ is a free Araki-Woods factor at parameter q^2 .

Proof. The proof is completely similar to the one of Theorem 3.1 of [3]. Denote $(N, \theta) = (\mathscr{L}(\mathbb{Z}), \tau) * (B(l^2(\mathbb{N})), \omega)$, and denote $\phi_0 = \frac{1}{1-q^2}\phi$ and $\theta_0 = \frac{1}{1-q^2}\theta$. Then by Proposition 3.10 of [3], we will have that

$$(e_{00}Me_{00},\phi_0) \cong (\mathscr{L}(\mathbb{Z}),\tau) * (e_{00}Ne_{00},\theta_0).$$

By Proposition 2.7 in [3] (which is based on the proof of Theorem 5.4 and Proposition 6.3 in [4]) and the remark before it, we know that $(e_{00}Ne_{00}, \theta_0)$ as well as $(N, \theta) \cong (e_{00}Ne_{00}, \theta_0) \otimes (B(l^2(\mathbb{N})), \omega)$ are free Araki-Woods factors at parameter q^2 . By the free absorption property ([4], Corollary 5.5), $(e_{00}Me_{00}, \phi_0)$ is a free Araki-Woods factor at parameter q^2 , and hence also $(M, \phi) \cong (e_{00}Me_{00}, \phi_0) \otimes (B(l^2(\mathbb{N})), \omega)$ is.

Proof (of Theorem 2.1). By the first two lemmas, $(\mathscr{L}^{\infty}(G), \varphi)$ is isomorphic to the free product of $(\mathscr{L}(\mathbb{Z}), \tau)$ with $(B(l^2(\mathbb{N})) \otimes \mathscr{L}(\mathbb{Z}), \omega \otimes \tau)$, which by the third lemma is a free Araki-Woods factor at parameter q^2 .

Acknowledgement: The motivation for this paper comes from a question posed by Stefaan Vaes concerning the validity of Theorem 2.1.

References

- [1] T. Banica, Le groupe quantique compact libre U(n), Comm. Math. Phys. 190 (1997), 143–172.
- [2] L. Barnett, Free product von Neumann algebras of type III, Proc. Amer. Math. Soc. 123 (1995), 543–553.
- [3] C. Houdayer, On some free products of von Neumann algebras which are free Araki-Woods factors, Int. Math. Res. Notices 2007 (2007), article ID rnm098, 21 pages.
- [4] D. Shlyakhtenko, Free quasi-free states, Pacific Journal of Mathematics 177 (2) (1997), 329–368.
- [5] A. Van Daele and S.Z. Wang, Universal quantum groups, Int. J. Math. 7 (2) (1996), 255–264.
- [6] D.V. Voiculescu, Circular and semicircular systems and free product factors, Operator Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory, Progress in Mathematics 92, Birkhäuser, Boston (1990).
- [7] D.V. Voiculescu, K.J. Dykema and A. Nica, Free random variables, CRM Monograph Series 1, AMS, Providence (1992).
- [8] S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613–665.
- [9] S.L. Woronowicz, Twisted SU(2) group. An example of a non-commutative differential calculus, Publ. RIMS, Kyoto University 23 (1987), 117–181.