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Abstract

We show that for F ∈ GL(2,C), the von Neumann algebra associated to the universal quantum group
Au(F ) is a free Araki-Woods factor.

Introduction

It is a classical theorem that any compact Lie group is a closed subgroup of some U(n). In [5], a class
of quantum groups was introduced which plays the same rôle with respect to the compact matrix
quantum groups (introduced in [8], but there called compact quantum pseudogroups). These univer-
sal quantum groups were denoted Au(F ), where the parameter F takes values in invertible matrices
over C. In [1], the representation theory of the Au(F ) was investigated, and it was shown that the
irreducible representations are naturally labeled by the free monoid with two generators. Also on
the level of the ‘function algebra’ of Au(F ), freeness manifests itself: it was shown in [1] that the
(normalized) trace of the fundamental representation is a circular element w.r.t. the Haar state (in
the sense of Voiculescu, see [6]). Furthermore, the von Neumann algebra associated to Au(I2), where
I2 is the unit matrix in GL(2,C), is actually isomorphic to the free group factor L (F2).

In this note, we generalize this last result by showing that for 0 < q ≤ 1, the von Neumann algebra

underlying the universal quantum group Au(F ) with F =
(

1 0
0 q

)
is a free Araki-Woods factor

([4]), namely the one associated to the orthogonal representation

t→
(

cos(t ln q2) − sin(t ln q2)
sin(t ln q2) cos(t ln q2)

)
of R on R2. The proof of this fact uses a technique similar to the one of Banica for the case F = I2,
combined with results from [3] (which are based on the matrix model techniques from [4]). Since

Au(F ) = Au(λU |F |U∗)
∗Research Assistant of the Research Foundation - Flanders (FWO - Vlaanderen).
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for any λ ∈ R+
0 and any unitary U (see [1]), we obtain that all Au(F ) with F ∈ GL(2,C) have free

Araki-Woods factors as their associated von Neumann algebras.

Remarks on notation: We denote by � the algebraic tensor product of vector spaces over C, and by ⊗
the spatial tensor product between von Neumann algebras or Hilbert spaces. If M is a von Neumann
algebra and x1, x2, . . . are elements in M , we denote by W ∗(x1, x2, . . .) the von Neumann subalgebra
of M which is the σ-weak closure of the unital ∗-algebra generated by the xi.

1 Preliminaries

In this preliminary section, we will give, for the sake of economy, ad hoc definitions of the von Neu-
mann algebras associated to the Au(F ) and Ao(F ) quantum groups ([5]), and of the free Araki-Woods
factors ([4]), for special values of their parameters.

Throughout this section, we fix a number 0 < q < 1.

Definition 1.1. We define the C∗-algebra Cu(H) as the universal enveloping C∗-algebra of the unital
∗-algebra generated by elements a and b, with defining relations

a∗a+ b∗b = 1 ab = qba
aa∗ + q2bb∗ = 1 a∗b = q−1ba∗

bb∗ = b∗b.

Remark: Cu(H) is the (universal) C∗-algebra associated with the quantum group H = SUq(2). In

[1], Proposition 5, it is shown that this equals the quantum group Ao(
(

0 1
−q−1 0

)
).

The following fact is found in [9].

Lemma 1.2. Let H be the Hilbert space l2(N)⊗ l2(Z), whose canonical basis elements we denote as
ξn,k (and with the convention ξn,k = 0 when n < 0). Then there exists a faithful unital ∗-representation
of Cu(H) on H , determined by {

π(a) ξn,k =
√

1− q2nξn−1,k,
π(b)ξn,k = qn ξn,k+1.

Definition 1.3. In the notation of the previous lemma, denote by ψ the state

ψ(x) = (1− q2)
∑
n∈N

q2n〈π(x)ξn,0, ξn,0〉

on Cu(H). Then ψ is called the Haar state on Cu(H).

Of course, this name is motivated by the further compact quantum group structure on Cu(H), which
we will however not need in the following.

Definition 1.4. The von Neumann algebra L∞(H) is defined to be the σ-weak closure of Cu(H) in
its GNS-representation with respect to the Haar state ψ.

We then continue to write ψ for the extension of ψ to a normal state on L∞(H).
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Notation 1.5. We will further use the following notations:

• The matrix units of B(l2(N)) w.r.t. the canonical basis of l2(N) are written eij.

• We denote ω for the normal state ω(eij) = δi,j(1− q2)q2i on B(l2(N)).

• We denote by S ⊆ L (Z) the shift operator ξk → ξk+1 on l2(Z).

• We denote by τ the state on L (Z) which makes S into a Haar unitary with respect to τ .

This last fact simply means that τ(Sn) = 0 for n ∈ Z0.

We will use the terminology ‘W∗-probability space’ when talking about a von Neumann algebra with
some fixed normal state on it. An isomorphism between two W∗-probability spaces is then a ∗-
isomorphism between the underlying von Neumann algebras, preserving the associated fixed states.

Lemma 1.6. There is a natural isomorphism

(L∞(H), ψ)→ (B(l2(N))⊗L (Z), ω ⊗ τ)

of W∗-probability spaces.

Proof. By the construction of ψ, we may identify L∞(H) with π(Cu(H))′′, and it is then sufficient to
prove that this last von Neumann algebra equals B(l2(N))⊗L (Z). Clearly, π(Cu(H))′′ ⊆ B(l2(N))⊗
L (Z). By functional calculus on a and b, we have eij ⊗ Sn ∈ π(Cu(H))′′ for all i, j ∈ N and n ∈ Z,
so in fact equality holds.

We will always write (1 ⊗ S) for the copy of S ∈ L (Z) inside L∞(H). Hence there should be no
notational confusion in the following definition.

Definition 1.7. The W∗-probability space (L∞(G), ϕ) is defined as

(W ∗(Sa, Sb, Sa∗, Sb∗), (τ ∗ ψ)|L∞(G)) ⊆ (L (Z), τ) ∗ (L∞(H), ψ).

Remark: By [1], Théorème 1.(iv), the von Neumann algebra L∞(G) will coincide with the von Neu-

mann algebra associated with the universal quantum group Au(
(

1 0
0 q

)
), and ϕ with its Haar state.

Recall that the state ω was introduced in Notation 1.5.

Definition 1.8. ([4], Corollary 4.9) By a free Araki-Woods factor (at parameter q2), we mean a
W∗-probability space (N,φ) isomorphic to the free product (L (Z), τ) ∗ (B(l2(N)), ω).

2 L∞(G) is free Araki-Woods

Throughout this section, we again fix a number 0 < q < 1. We also continue to use the notations
introduced in the previous section.

We proceed to prove the following theorem.

Theorem 2.1. The W∗-probability space (L∞(G), ϕ) is a free Araki-Woods factor at parameter q2.

By the remark after Definition 1.7 and the remarks in the introduction, this will imply that if
F ∈ GL(2,C), then the von Neumann algebra associated to Au(F ) is the free Araki-Woods fac-
tor at parameter λ1

λ2
, where λ1 ≤ λ2 are the eigenvalues of F ∗F (where we take L (F2) to be the free
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Araki-Woods factor at parameter 1).

The proof of Theorem 2.1 will be preceded by three lemmas. Consider the following von Neumann
subalgebras of (L (Z), τ) ∗ (L∞(H), ψ):

(M1, ϕ1) = (W ∗(S(1⊗ S)), (τ ∗ ψ)|M1
)

and
(M2, ϕ2) = (W ∗((1⊗ S∗)a, (1⊗ S∗)b, (1⊗ S∗)a∗, (1⊗ S∗)b∗), (τ ∗ ψ)|M2

).

Lemma 2.2. The von Neumann algebras M1 and M2 are free with respect to each other, and L∞(G)
is the smallest von Neumann subalgebra of L (Z) ∗L∞(H) which contains them.

Proof. The proof is entirely similar to the one of Théorème 6 in [1]. First of all, remark that S(1⊗S)
is the unitary part in the polar decomposition of Sb, so that S(1⊗ S) is in L∞(G). Then of course

(1⊗ S∗)a = (1⊗ S∗)S∗ · Sa

is in L∞(G), and similarly for the other generators of M2. Hence M1 and M2 indeed generate L∞(G).

The proof of the freeness of M1 w.r.t. M2 is based on a small alteration of Lemme 8 of [1].

Lemma. Let (A, φ) be a unital ∗-algebra together with a functional φ on it. Let B ⊆ A be a unital
sub-∗-algebra, and d ∈ B a unitary in the center of B such that φ(d) = φ(d∗) = 0. Let u ∈ A be
a Haar unitary which is ∗-free from B w.r.t. φ. Then ud is a Haar unitary which is ∗-free from B
w.r.t. φ.

Proof. This is precisely Lemme 8 of [1], with the condition ‘φ is a trace’ replaced by ‘d is in the center
of B’. However, the proof of that lemma still applies ad verbam.

We can then apply this lemma to get that S(1 ⊗ S) is ∗-free w.r.t. L∞(H), by taking (A, φ) =
(L (Z), τ) ∗ (L∞(H), ψ), B = L∞(H), d = 1⊗ S and u = S. A fortiori, we will then have M1 free
w.r.t. M2.

Lemma 2.3. We have
(M1, ϕ1) ∼= (L (Z), τ)

and
(M2, ϕ2) ∼= (B(l2(N))⊗L (Z), ω ⊗ τ).

Proof. The fact that (M1, ϕ1) ∼= (L (Z), τ) is of course trivial. We want to show that (M2, ϕ2) ∼=
(B(l2(N))⊗L (Z), ω ⊗ τ).

We have that 1⊗ S2 is in M2, since this is the adjoint of the unitary part of the polar decomposition
of (1 ⊗ S∗)b∗. Also all eii ⊗ 1 are in M2, by functional calculus on the positive part of this polar
decomposition. Hence, by multiplying (1⊗S∗)a or (1⊗S∗)a∗ to the left with the eii⊗1, and possibly
multiplying with 1⊗ S2, we conclude that the eij ⊗ Si−j with |i− j| = 1 are in M2. But then also all
fij = eij ⊗Si−j with i, j ∈ N are in M2, and it is not hard to see that in fact M2 = W ∗(fij , (1⊗S2)).
Since ψ(fij(1⊗ S2)n) = (ω ⊗ τ)(eij ⊗ Sn) by an easy calculation, we are done.

Lemma 2.4. The W∗-probability space (N,φ) := (L (Z), τ) ∗ (B(l2(N)) ⊗ L (Z), ω ⊗ τ) is a free
Araki-Woods factor at parameter q2.
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Proof. The proof is completely similar to the one of Theorem 3.1 of [3]. Denote (N, θ) = (L (Z), τ) ∗
(B(l2(N)), ω), and denote φ0 = 1

1−q2φ and θ0 = 1
1−q2 θ. Then by Proposition 3.10 of [3], we will have

that
(e00Me00, φ0) ∼= (L (Z), τ) ∗ (e00Ne00, θ0).

By Proposition 2.7 in [3] (which is based on the proof of Theorem 5.4 and Proposition 6.3 in [4])
and the remark before it, we know that (e00Ne00, θ0) as well as (N, θ) ∼= (e00Ne00, θ0)⊗ (B(l2(N)), ω)
are free Araki-Woods factors at parameter q2. By the free absorption property ([4], Corollary 5.5),
(e00Me00, φ0) is a free Araki-Woods factor at parameter q2, and hence also (M,φ) ∼= (e00Me00, φ0)⊗
(B(l2(N)), ω) is.

Proof (of Theorem 2.1). By the first two lemmas, (L∞(G), ϕ) is isomorphic to the free product of
(L (Z), τ) with (B(l2(N))⊗L (Z), ω ⊗ τ), which by the third lemma is a free Araki-Woods factor at
parameter q2.

Acknowledgement: The motivation for this paper comes from a question posed by Stefaan Vaes
concerning the validity of Theorem 2.1.
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